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Abstract

A quasi-classical theory of giant magnetoresistance (GMR) in nanoscale point
contacts between different ferromagnetic metals is developed. The contacts
were sorted by three types of mutual positions of the conduction spin-subband
bottoms which are shifted one against another by the exchange interaction. A
model of a linear domain wall has been used to account for the finite contact
length. The magnetoresistance is plotted against the size of the nanocontact. In
heterocontacts the magnetoresistance effect not only turns out to be negative,
as usual, but it can be positive as well. The relevance of the results to existing
experiments on GMR in point heterocontacts is discussed.

1. Introduction

The experimental discovery of ultra-high magnetoresistance (MR) in ferromagnetic
nanocontacts has attracted considerable attention due to its potential technological applications
for future generations of magnetoresistive sensors [1-8]. Two mechanisms of giant
magnetoresistance (GMR) in magnetic nanocontacts were proposed to explain the experimental
data: one is the enhancement of the impurity scattering in a domain wall (DW) [2, 4],
and the other is the scattering of electrons by an energy landscape of DW (domain wall
scattering) [9-11]. Both mechanisms essentially exploit the sharpness of the domain wall
profile shrinking into a narrow constriction (ultimately of atomic size) [12-15]. The DW
scattering theory [11] is general enough to admit spin asymmetry of the bulk impurity
scattering (conduction electron mean free path in the spin-subbands of a ferromagnet may
differ by five to seven times [16]) as well as the spin asymmetry of the interface scattering
(contacting ferromagnets can be different—ferromagnetic heterocontacts). The aim of the
present paper is to analyse the influence of the spin-asymmetry of the interface scattering
on the magnetoresistance of ferromagnetic point heterocontacts and to search for the optimal
conditions at which the GMR effect can be maximized.
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2. Conductance of a ferromagnetic heterocontact

We consider a small-area contact between two single-domain ferromagnetic metals. When
the magnetization on both sides of the contact is in parallel (P) alignment there is no domain
wall in the constriction, and the electric current flows through the point contact independently
in each of the conduction electron spin-subbands. In an antiparallel (AP) alignment of the
magnetizations, a domain wall is created in the constriction [12—15]. Simultaneously, the
conduction spin-subband assignment in one of the magnetic domains reverses with respect
to the previous one. In the case of a ferromagnetic heterocontact, the band structures of the
spin-subbands of the ferromagnetic metals do not coincide with either spin-up or spin-down
conduction electrons. It is obvious that the potential barriers at the interface of the contact
(see figure insets below) are different for the P and AP alignments. As a result, scatterings of
electrons associated with these potential barriers and magnetization profiles at the interface are
different for the two alignments, which gives rise to magnetoresistance.

The case of a ferromagnetic homocontact (a contact made of the same ferromagnetic metal)
was considered in [11] in the quasi-classical approximation. Using the same approach, here we
give a general derivation of the conductance of a ferromagnetic heterocontact made of different
ferromagnetic metals. The model of the nanocontact that we consider is a circular hole of radius
a made in an impenetrable membrane, which divides the space into two halves, each of which
is occupied by a single-domain ferromagnetic metal. The z-axis of the coordinate system is
chosen to be perpendicular to the membrane plane. Our aim is to calculate the electric current
I* through the hole in response to the voltage drop V applied to the outer leads far away from
the contact:

I*(z > 0)= a/oodk Ji(ka)j(0, k). (1
0

Here the Bessel function J; (x) comes from the integration of the current density j*(z = 0, p)
over the contact cross-section, and j*(0, k) is the Fourier transform of the current density
j*(z = 0, p) over the in-plane coordinate p. The current density can be expressed via the
antisymmetric quasi-classical Green function (GF), g.(z, p), as follows (c = & = 1):

ep12: /2

Jji(z, p) = 5 dQg cosHg.(z, p). ()
T Jo

The antisymmetric GF itself is a solution of the system of Boltzmann-type equations [17]:

08a,0 08s.a
lZ,a— + l||,c.( — + 8s,0 — <gs,a> == O,
0z ap 3)
/ ags,a —|—l agu,a + -0
z,a 8Z ||, 8/) 8a,a = Y,
supplied with the boundary conditions (BC) at interfaces
8a,as P| < PFL, PFR
il = SR = ! @)
0, min(prL, PER) < P|»
2Ry 80,0 = Dy (8510 — gsR,a)o (5)

In the above equations, gy = 1/2[g4(n, 2, p) £ g« (—n;, z, p)] is the single-particle quasi-
classical Green function that is symmetric (antisymmetric) with respect to the projection
n; = p;.«/Pr.q Of the Fermi momentum pg, on the axis z; [, o = [, cos 6 is the projection of
the spin-dependent electron mean free path [, on the axis z, / ﬁ’a = 102( — lzz’a; o = (1, ]) is the
spin index, and p = (x, y) is the coordinate in the plane of the contact. The angular brackets in
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(gs) mean averaging over the solid angle: (g;) = ¢ d2/27 g, pj is the projection of the spin-
dependent Fermi momentum pg, on the plane of the contact, and D, and R, = 1 — D, are
the angular- and spin-dependent quantum-mechanical transmission and reflection coefficients,
respectively. Boundary conditions (4) and (5) obey the specular reflection law:

P = prLSinf, = ppg sin Og. (6)

The system of equation (3) can be solved in a mixed representation [11], real-space for the
variable z, and Fourier-transformed over the variable p. The formal solution reads:

1 Z
m@<m=ﬂi+z- e LR (1 (8))e, dE, (7)

l o0
frGZ>0) =g+ — [ e D (fir(&)), dE, ®)

lZR z

where fi(¢) = gi(¢) — 2tanh % ki = [1 —i(kl;)]/1;;. We omit the common spin label to
discharge a bit of the complexity of the notation. The above solution allows mean free paths
as well as Fermi momenta to be non-equivalent in the contacting ferromagnets. To get the
antisymmetric GF, g,, in a closed form from the solution (7) and (8), we average it over a solid

angle at each half-space:

b4 —kr(z—§)
(fau(z < 0))g, = — (gaL)g, +/ <eT(st($))9,_> dg, )
-0 z oL
00 [a—Kr(5—2)
(fr(z > 0))g, = (gar)e, +/ <T<st($))9R> dg. (10)
z z Or

Then, we take the slowly varying symmetric GFs, ( fiL(§))e, and ( fir (§))s,, out of the integrals
in equations (9) and (10) in the point & = z. The resulting linear equations provide approximate
expressions for the angular-averaged symmetric GFs:

(8ailg,
(Fi(@))s, = sen@ 1" (an
where
[e.¢] e—l(,‘r] l
A 2/0 < » >0i dn = 0 arctan(kl;). (12)

Now, solution (11) can be used in combination with equations (7) and (8) to satisfy the
boundary condition equation (5). Consecutive substitution of equation (11) into equations (7)
and (8), and then the result into BC (5), gives:

2g, = 2Dth(8) tanh [ £=¢Y
%= anh () — tanh ( — Vi

) 00 —KLn ) 00 —KRN
B <gdL>9L/ Dt dy — (&R)@R/ pe dn., 13)
1 — )\.L 0 lZL 11— )\R 0 ZZR
where
a 2
. 2
n=/’®/ pe dp = == Ui (ka). (14)
0 0

Assuming first that the antisymmetric GF, g,, in the left-hand side of (13) is equal to g,i,
according to BC (4), and then to g, after solid-angle averaging in an appropriate half-space,
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we arrive at a system of two equations, the solution of which looks a bit cumbersome:

£ g—eV
<guL>9,_ = -2 [tanh (E) — tanh< T )i| Yk

x {(D)g, [2(1 = Ar)(1 — Ag) + 2a(1 — A)] = (D)g, Aa(1 — Ap)} Den™" k),

15)
(&ar)o, = [tanh( ) — tanh( — eV)i| Vi
oo [

2(1 = Ar)(1 = Ag) 4+ A1(1 = Ag)] = (D)g, A3(1 — Ag)} Den™'(k),

(16)
where
Den(k) = 4(1 — A1) (1 — k) +2[ A1 (1 — Ag) + Aa(1 = Ar)] = Aaks + ko, (17)
~ (&) e—KLT]
= <D > an =1Ly, as)
0 Lr |y,
%2 = (Ir)g, . s = (IL)g, » i = (Ig)g, - (19)

Being substituted into the right-hand side of equation (13), equations (15) and (16) solve the
problem of finding the current density, equation (2), and eventually the net current 7° (1)
through the nanocontact as follows (a linear approximation on the applied bias voltage V has
been utilized):

2.2 2 o0 2
IFz— 0,1=0) = M[ a Z2KD g, (20)
T 0 k
where
F(k) = (x. D)y, — (G1 (xL1.)g, + G2 (xLIR)s,) . 21)
Gy = {(D)g, [2(1 = Ag) + %2] — (D)g, A4} Den~' (k), (22)
G2 = [(D)g, [2(1 = A) + A1] — (D)g, 23} Den~!(k), (23)
(xr1r)g, = / <cos QLDEKM> dn, (xr1R)g, = / <0059LD6KM> dn. (24)
0 L g, 0 R g,

Notice finally that the current given by equation (20) refers to a particular spin-channel of
conductance, in spite of the spin index being omitted for brevity. The total current through the
nanocontact is the sum of currents for both the spin-channels. The formal expression for the
second one is the same, but with all physical parameters referred to the second spin-channel
(see section 3).

3. Magnetoresistance of ferromagnetic nanocontacts

3.1. General considerations

The total current through a magnetic nanocontact combines two spin-channels whose
conductances are different for P and AP mutual orientations of magnetizations in the banks.
The magnetoresistance is characterized by a dimensionless ratio:

oP — oAP
MR = & (25)
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where o P(AP) = crf (AP) —i—crf(AP) (IPAP) = oPAP)Y) Then, MR is positive if the physical effect
itself is negative (the resistance drops when a magnetic field is applied). Now the dependence
of MR on the conduction band parameters of contacting ferromagnets can be analysed.

To account for a finite nanocontact length, we place linear-profile DW inside the
nanocontact for the AP alignment of magnetizations [12, 18-20]. The quantum-mechanical
transmission coefficient through the linear DW can be expressed as follows:

Akt (W) =2

DSE(x, w) = ; 26
() = B — k) + gkt £ 10)? 20
where
o = Ai(qiw) Bi(qaw) — Bi(qw) Ai (qaw) ,
B = t(w) {Ai (q1w) Bi' (g2w) — Bi (q1w) Ai’ (q2w)}, @7

y = t(w) {Al (¢1w) Bi(g2w) — Bi' (q1w) Ai (g2w)} ,
ik = 1*(w) {Ai (q1w) Bi' (q2w) — Bi’ (q1w) Ai’ (g2w)} .

and t(w) = [2mEex/w]1/3, Ey = (k]%M — kém)/Zm, q = —k%Mt(w)/2mEex, and ¢ =
—k]%mt(w)/2mEex, where w is the half-width of DW; Ai(z), Bi(z), Ai’'(z), and Bi'(z) are
the Airy functions and their derivatives; and k, = kpm cos(0n) and kyy = kpy cos(By) are
the normal components of the wavevector of minority and majority subbands, respectively.
Note here that k,, is used for a subband with smaller Fermi momentum, and ky; for a subband
with larger Fermi momentum, whatever the spin projection of the subband, or the side of the
contact (left or right), is. The quantum-mechanics textbook expression for the coefficient of
transmission through a step-like DW (band-offset model), D3P (x) = 4kykm / (ky + km)?, can
be retrieved from equation (27) in the limit of w — 0. Again, we omit the spin index to
simplify the appearance of the formulas above.

Ferromagnetic heterocontacts mean that the contacting ferromagnets have different
parameters for their conduction bands. In our calculations we fix parameters of the
ferromagnetic metal at the left bank of the contact (the values kg, = 4 nm~!, kpy = 10 nm™!,
and kg /krpy = 0.4 are close to that for iron cited in [21, 22]), and vary the conduction band
properties of the second ferromagnetic metal. Before we proceed with particular calculations,
we have to mention an important detail which distinguishes the ferromagnetic heterocontacts
from homocontacts. For a parallel configuration of magnetizations in a homocontact, there is
no DW in the constricted area, and an electron of either spin-projection moves in a flat potential
landscape because materials (conduction bands) on both sides of the contact are identical. Then,
the quantum-mechanical transmission coefficient D in both conduction spin-channels is equal
to one. In contrast, in a ferromagnetic heterocontact there is always a potential barrier at the
nanocontact because the conduction band bottoms do not coincide for either spin projection
and magnetization alignments. The only difference is that in the P magnetization configuration
there is no DW in the nanocontact, but in the AP configuration there is. Then, for the P
alignment we have to assume a sharp change in the band parameters just at the interface of two
ferromagnets, but for the AP alignment we place a linear profile DW inside the nanocontact.
In a common stream of numerical calculation we simply simulate the sharp interface in the P
configuration by a linear DW of about one angstrom in thickness (L = 2w = 0.1 nm).

3.2. Magnetoresistance of a ferromagnetic heterocontact

In a simple parabolic band that we use here, the heterocontacts are sorted by the mutual
positions of the bottoms of their conduction spin-subbands in the parallel alignment of
magnetizations. Three physically distinct combinations can be considered (see insets in the
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Figure 1. Dependence of MR on the contact size for the case k., < krLp < krpry < krry. The
Fermi momenta of the contacting ferromagnets are indicated in the inset; the ratio I /I;4 = 2 is
taken to be equal to /g /g4 to simplify appearance, and [, /Ig, = 1.

figures below), and MR for every combination is calculated as a function of the contact size.
Looking through the insets of the figures, one may see that the Fermi momentum of a spin-
subband from the left to the contact can be larger as well as smaller than that from the right.
However, according to the momentum conservation law, equation (6), not every incident angle
from the side of the larger momentum is allowed for an electron to transmit to the side of the

smaller Fermi momentum. Then, the integrals in equations (18), (19) and (24) can be evaluated
as follows:

1
D L :/ deD(xL), —5/ de Ll D(XL)
e x :I:)c2 (28)
(xr D)y, = /dXLD(XL)XL,
i) / xpD(xp)dxp 7 (e n)e / xpD(xp)dxp .9
\/l—i—(le) (1—x2) \/1+(k1R5) (1—x2)
T = / T R (30)
\/l—i—(le) (1—x2)
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Figure 2. Dependence of MR on the contact size for the case kpL, < krry < kpLt < kgry. The
layout and choice of the mean free paths are the same as in figure 1.

- 5x.D

o= [ au D) , 31)
w2 1+ () (1 x3)

- Sx.D

vi= [ o X D(xr) , (32)
3} 22 1+ (kL) (1 - x3)
1

- D

K= [ an SN 33)
v U Kigd) (1 - 23)

where § = kpr/kpr. If kp < kpgr, then x, = 0, x., = /(1 — §2)82, and the upper sign in the
square roots has to be used. When kg > kg, then x. = x.,, X, = /1 — (8) 72, and the lower
sign in the square roots has to be used.

Figure 1 displays MR of a hypothetical heterocontact in which the right-hand side
ferromagnet has larger Fermi momenta for both conduction spin-subbands compared with
those for the left-hand side ferromagnet (kp, < kpy < kpry < kprt). In contrast to the
case of a homocontact, the MR of this type of heterocontact is negative, and it decreases in
absolute value when approaching the ballistic regime (@ < Inin, Where [ninlz4, and also for
figures 2 and 3). Moreover, there is a shallow valley in the range a/lni, =~ 1-6. Positive
physical magnetoresistance (to which the negative MR values are given in figure 1 because
of the definition, equation (25)) is explained by sharper potential barriers (a more resistive
interface) in the P alignment compared with the smoother potential landscape in the presence
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Figure 3. Dependence of MR on the contact size for the case kpL, < krry < kpLt < kgry. The
layout and choice of the mean free paths are the same as in figure 1.

of a domain wall (see the inset in figure 1). The magnitude of the magnetoresistance effect is
rather small.

Magnetoresistance of the second type of heterocontact (kpr|, < krr| < krLy < kpry) is
displayed in figure 2. MR is positive in the entire range of contact sizes and much bigger in
magnitude compared with the first case given in figure 1. It increases by about four times upon
changing the conductance regime on the size of the nanocontact from diffusive to ballistic.

Figure 3 shows the dependence of MR on the contact size for case 3 (kg < kpr;, <
kery < kery). The MR behaviour is similar to the second case; the sign of MR is always
positive (magnetoresistance is negative). A considerable enhancement of MR follows from
the calculations upon approaching the ballistic regime of conductance in the vicinity of the
nanocontact. It is worth noting here that if we exchange spin indices of all spin-dependent
quantities in the formulas above, then the MR(a) dependences in figures 1-3 do not change.

3.3. Discussion of experiments

To the authors’ knowledge there are three reports on magnetoresistance measurements
in ferromagnetic heterocontacts: Mumetal-Ni [23, 24] and CrO,-Ni [25]. Mumetal
(Ni77Fe 4CusMoy) is close to Permalloy (NizgFe;) in its composition. Therefore, we may
use the material parameters of Permalloy and nickel [16, 26-32] as a trial guess to calculate the
MR of the Mumetal-Ni couple. The results for MR are displayed in figure 4; the parameters
that we used for the calculations correspond to case 3 (figure 3), and are given in the figure.
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Figure 4. Dependence of MR on the contact size for the choice of parameters close to the Mumetal—
Ni heterocontact. The values of parameters are given in the figure.

The ballistic limit magnitude of MR varies in the range 88—120% (L = 0.1-5 nm), which
agrees satisfactorily with the experimental values of MR = 78-132% quoted in table 1 of [23]
and figure 2 in [24] at the smallest conductances for the P-alignment of magnetizations. As for
the case of a CrO,—Ni heterocontact [25], we would abstain from considering the data in the
frame of the present calculations, because the parallel alignment conductance is too low to treat
the Ni-CrO, nanocontacts as being true metallic conducting ones. The tunnelling conductance
regime, which we suspect in Ni-CrO, heterocontacts, is beyond the scope of our theory.

4. Conclusions

To summarize, in this paper we investigated GMR theoretically in nanoscale ferromagnetic
heterocontacts. The quasi-classical theory of magnetic nanocontacts was generalized for the
case of metallic ferromagnets with arbitrary Fermi momenta and mean free paths of the
conduction spin-subbands. The heterocontacts were sorted by three types of mutual positions of
conduction spin-subband bottoms. A model of the linear domain wall profile for an antiparallel
alignment of magnetizations in contacting ferromagnets was used to account for the finite
contact length. In general, the magnetoresistance plotted against the size of the nanocontact can
be of either sign, depending on the conduction bands matching. The magnitude of the effect for
heterocontacts in our calculations was always smaller than that for a contact made of the same
ferromagnetic metal. The magnetoresistance in the case when one of the ferromagnetic metals
has both Fermi momenta of the conduction electron spin-subbands smaller than the other is

9



J. Phys.: Condens. Matter 19 (2007) 196215 A N Useinov et al

always much smaller compared with the other band arrangements considered in the paper. The
theoretical results agree satisfactorily with the available experimental data on the ferromagnetic
heterocontacts Mumetal—Ni.

Acknowledgments

Stimulating conversations with Professor N Garcia are gratefully acknowledged. The work was
supported by the European Commission grant NMP4-CT-2003-505282.

References

[10]

[11]
[12]
[13]

[14]
[15]
[16]
[17]

[18]
[19]
[20]
[21]

[22]
[23]
[24]
[25]
[26]
[27]

[28]
[29]
[30]
[31]

[32]

10

Garcia N, Muiloz M and Zhao Y-W 1999 Phys. Rev. Lett. 82 2923

Tatara G, Zhao Y-W, Mufioz M and Garcia N 1999 Phys. Rev. Lett. 83 2030

Garcia N, Muiloz M and Zhao Y-W 2000 Appl. Phys. Lett. 76 2586

Zhao Y-W, Muifioz M, Tatara G and Garcia N 2001 J. Magn. Magn. Mater. 223 169

Garcia N, Muioz M, Qian G G, Rohrer H, Saveliev I G and Zhao Y-W 2001 Appl. Phys. Lett. 79 4550

Garcia N, Mufioz M, Osipov V V, Ponizovskaya E V, Qian G G, Saveliev I G and Zhao Y-W 2002 J. Magn.
Magn. Mater. 240 92

Sullivan M R, Boehm D A, Ateya D A, Hua S Z and Chopra H D 2005 Phys. Rev. B 71 024412

Chopra H D, Sullivan M R, Armstrong J N and Hua S Z 2005 Nat. Mater. 4 832

Imamura H, Kobayashi N, Takahashi S and Maekawa S 2000 Phys. Rev. Lett. 84 1003

Zvezdin A K and Popkov A F 2000 Pis. Zh. Eksp. Teor. Fiz. 71 304

Zvezdin A K and Popkov A F 2000 JETP Lett. 71 209 (Engl. Transl.)

Tagirov L R, Vodopyanov B P and Efetov K B 2001 Phys. Rev. B 63 104468

Bruno P 1999 Phys. Rev. Lett. 83 2425

Savchenko L L, Zvezdin A K, Popkov A F and Zvezdin K A 2001 Fiz. Tverd. Tela 43 1449

Savchenko L L, Zvezdin A K, Popkov A F and Zvezdin K A 2001 Phys. Solid State 43 1509 (Engl. Transl.)

Molyneux V A, Osipov V V and Ponizovskaya E V 2002 Phys. Rev. B 65 184425

Labaye Y, Berger L and Coey J M D 2002 J. Appl. Phys. 91 5341

Dieny B J 1994 J. Magn. Magn. Mater. 136 335

Zaitsev A 'V 1984 Zh. Eksp. Teor. Fiz. 86 1742

Zaitsev A 'V 1984 Sov. Phys.—JETP 59 1015 (Engl. Transl.)

Tagirov L R, Vodopyanov B P and Efetov K B 2002 Phys. Rev. B 65 214419

Gopar V A, Weinmann D, Jalabert R A and Stamps R L 2004 Phys. Rev. B 69 014426

Kazantseva N, Wieser R and Nowak U 2005 Phys. Rev. Lett. 94 037206

Stearns M B 1977 J. Magn. Magn. Mater. 5 167

Stearns M B 1993 J. Appl. Phys. 73 6396

Jansen R and Lodder J C 2000 Phys. Rev. B 61 5860

Garcia N, Zhao Y-W, Mufioz M and Saveliev I G 2000 /EEE Trans. Magn. 36 2833

Zhao Y-W, Muioz M, Tatara G and Garcia N 2001 J. Magn. Magn. Mater. 223 169

Chung S H, Muiioz M, Garcia N, Egelhoff W F Jr and Gomez R D 2002 Phys. Rev. Lett. 89 287203

Gurney B A, Speriosu V S, Nozieres J-P, Lefakis H, Wilhoit D R and Need O U 1993 Phys. Rev. Lett. 71 4023

Petrovykh D Y, Altmann K N, Hochst H, Laubscher M, Maat S, Mankey G J and Himpsel F J 1998 Appl. Phys.
Lett. 73 3459

Himpsel F J, Ortega J E, Mankey G J and Willis R F 1998 Adv. Phys. 47 511

Himpsel F J, Altmann K N, Mankey G J, Ortega J E and Petrovykh D Y 1999 J. Magn. Magn. Mater. 200 456

Himpsel F J 1999 J. Phys.: Condens. Matter 11 9483

Altmann K N, Petrovykh D Y, Mankey G J, Shannon N, Gilman N, Hochstrasser M, Willis R F and
Himpsel F J 2000 Phys. Rev. B 61 15661

Altmann K N, Gilman N, Hayoz J, Willis R F and Himpsel F J 2001 Phys. Rev. Lett. 87 137201


http://dx.doi.org/10.1103/PhysRevLett.82.2923
http://dx.doi.org/10.1103/PhysRevLett.83.2030
http://dx.doi.org/10.1063/1.126416
http://dx.doi.org/10.1016/S0304-8853(00)00750-2
http://dx.doi.org/10.1063/1.1427152
http://dx.doi.org/10.1016/S0304-8853(01)00713-2
http://dx.doi.org/10.1103/PhysRevB.71.024412
http://dx.doi.org/10.1038/nmat1510
http://dx.doi.org/10.1103/PhysRevLett.84.1003
http://dx.doi.org/10.1134/1.568317
http://dx.doi.org/10.1103/PhysRevB.63.104428
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1134/1.1395092
http://dx.doi.org/10.1103/PhysRevB.65.184425
http://dx.doi.org/10.1063/1.1461065
http://dx.doi.org/10.1016/0304-8853(94)00356-4
http://dx.doi.org/10.1103/PhysRevB.65.214419
http://dx.doi.org/10.1103/PhysRevB.69.014426
http://dx.doi.org/10.1103/PhysRevLett.94.037206
http://dx.doi.org/10.1016/0304-8853(77)90185-8
http://dx.doi.org/10.1063/1.352608
http://dx.doi.org/10.1103/PhysRevB.61.5860
http://dx.doi.org/10.1109/20.908602
http://dx.doi.org/10.1016/S0304-8853(00)00750-2
http://dx.doi.org/10.1103/PhysRevLett.89.287203
http://dx.doi.org/10.1103/PhysRevLett.71.4023
http://dx.doi.org/10.1063/1.122796
http://dx.doi.org/10.1080/000187398243519
http://dx.doi.org/10.1016/S0304-8853(99)00349-2
http://dx.doi.org/10.1088/0953-8984/11/48/309
http://dx.doi.org/10.1103/PhysRevB.61.15661
http://dx.doi.org/10.1103/PhysRevLett.87.137201

	1. Introduction
	2. Conductance of a ferromagnetic heterocontact
	3. Magnetoresistance of ferromagnetic nanocontacts
	3.1. General considerations
	3.2. Magnetoresistance of a ferromagnetic heterocontact
	3.3. Discussion of experiments

	4. Conclusions
	Acknowledgments
	References

